
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 8, Aug. 2022 2816
Copyright ⓒ 2022 KSII

A preliminary version of this paper was presented at ICONI 2021 and was selected as an outstanding paper.

http://doi.org/10.3837/tiis.2022.08.020 ISSN : 1976-7277

High Performance Integer Multiplier on
FPGA with Radix-4 Number Theoretic

Transform

Boon-Chiao Chang1, Wai-Kong Lee2, Bok-Min Goi1 and Seong Oun Hwang2
1Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman (UTAR), Sungai Long,

Malaysia.
2Department of Computer Engineering, Gachon University, Seongnam, South Korea.

[e-mail: sohwang@gachon.ac.kr]
*Corresponding author: Seong Oun Hwang

Received March 30, 2022; revised July 11, 2022; accepted July 19, 2022;

published August 31, 2022

Abstract

Number Theoretic Transform (NTT) is a method to design efficient multiplier for large integer
multiplication, which is widely used in cryptography and scientific computation. On top of
that, it has also received wide attention from the research community to design efficient
hardware architecture for large size RSA, fully homomorphic encryption, and lattice-based
cryptography. Existing NTT hardware architecture reported in the literature are mainly
designed based on radix-2 NTT, due to its small area consumption. However, NTT with larger
radix (e.g., radix-4) may achieve faster speed performance in the expense of larger hardware
resources. In this paper, we present the performance evaluation on NTT architecture in terms
of hardware resource consumption and the latency, based on the proposed radix-2 and radix-
4 technique. Our experimental results show that the 16-point radix-4 architecture is 2× faster
than radix-2 architecture in expense of approximately 4× additional hardware. The proposed
architecture can be extended to support the large integer multiplication in cryptography
applications (e.g., RSA). The experimental results show that the proposed 3072-bit multiplier
outperformed the best 3k-multiplier from Chen et al. [16] by 3.06%, but it also costs about 40%
more LUTs and 77.8% more DSPs resources.

Keywords: Cryptography, FPGA, Number Theoretic Transform, Homomorphic
Encryption and Lattice based Cryptosystem.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 8, August 2022 2817

1. Introduction

Large integer multiplication is required for many applications, including scientific
computation [1] and cryptography [2-4]. However, standard schoolbook multiplication
algorithm is difficult to scale when the size of integer grows. The computational complexity
of schoolbook multiplication is O(n2), where n refers to the length of input data, indicating that
this is a quadratic relationship. A widely used algorithm to reduce the complexity of
multiplication is Schonhage-Strassen Multiplication Algorithm (SSMA) [5]. This algorithm is
able to improve the complexity from O(n2) to O(n log n (log log (n))) by performing the
multiplication in the frequency domain, which is also known as convolution. The speedup
gained by SSMA is due to the fast algorithm to convert between time and frequency domain.
Discrete Fourier Transform (DFT) is a popular technique to transform the data from time
domain to its frequency domain, or vice versa. DFT operates on complex domain, while
Number Theoretic Transform (NTT) operates over a finite field GF(p). The modulus p needs
to be specifically chosen to allow NTT to operate correctly. Since DFT is using floating point
arithmetic to compute the complex numbers, it is not suitable to be used in cryptography. This
is because floating point arithmetic contains round-off errors, and the error analysis is difficult
to handle correctly. Hence, NTT is more widely used in cryptography since it only involves
integer arithmetic.

Algorithm 1 Pseudocode for SSMA

Input: xi and yi, the coefficients of the multiplier and multiplicand.

Output: zi, the coefficients of the multiplication product,

zi = xi X yi

X NTT(x), Y NTT(y)
for i from 0 to N – 1 do
 Z[i] X[i] * Y[i]
end for
z inverseNTT(Z)
z Evaluation(z)
Return z

Algorithm 1 shows the standard SSMA which involves three NTTs steps. It first performs two
forward transforms on X and Y (the multiplication operands), followed by the point-wise
multiplication and one inverse transform on the result of product (Z). The implementation of
NTT in hardware usually employs radix-2 architecture due to the small area consumption, but
radix-4 have potential to achieve faster speed performance. In this paper, we performed
evaluation for radix-2 and radix-4 are NTT in terms of its speed performance and hardware
area consumption. Our experimental results show that radix-4 can achieve faster performance
in expense of additional hardware area.

2818 Chang et al.: High Performance Integer Multiplier on FPGA
with Radix-4 Number Theoretic Transform

2. Number Theoretic Transform and Fast Fourier Transform

2.1 NTT and FFT

Fast Fourier Transform (FFT) is a much more efficient way to calculate Discrete Fourier
Transform (DFT), effectively reducing the O(n2) complexity to O(n log n). Cooley-Tukey FFT
(CTFFT) [6] is used in this paper as it is more suitable for parallel implementation in FPGA.
Note that the CTFFT can also be applied to speedup NTT. In the subsequent discussions, we
denote our implementation in integer domain as CTFNT (Cooley Tukey Fast Number
Theoretic Transform) to differentiate it from CTFFT (complex domain). CTFNT allows a
large integer or polynomial to be computed with multiple FNTs with smaller sizes. The data
is organized in two-dimensional form, which is a property that can be exploited to improve the
parallelism. The steps to perform CTFNT are presented below:

1. N-point FNT is decomposed into 2D, N1 × N2.

2. Column FNT (Perform N1 times of N2-point FNT).

3. Twiddle factors multiplication.

4. Row FNT (Perform N2 times of N1-point FNT).

2.2 Radix-2 vs Radix-4 NTT

Radix-2 FNT is most commonly used in designing hardware architecture, among other FNT
variants, due to its low area consumption and simplicity. Algorithm 2 shows the steps in
performing an in-place radix-2 FNT using the Cooley-Tukey technique. Note that the in-place
implementation stores the results of NTT onto the input memory. This effectively eliminates
the need to have a separate memory for storing the output data, which is useful in embedded
systems that are constrained in memory.

Algorithm 2 In-place radix-2 CTFNT

Input: Polynomial a in the time domain; pre-computed twiddle factors (ω)

Output: Polynomial A in the frequency (NTT) domain

for NP=n/2; NP>0 NP=NP/2 do
 a[i] a[i] × Y[i]
 jf 0; j0; jTwi0; // Initialize the indices.
 for jf=0; jf<n; jf=j+NP do
 for j=jf; j<jf+NP; j=j+1 do
 temp (ω[jTwi] × a[j+NP]) mod p;
 a[j+NP] (a[j]-temp) mod p; // Butterfly operations
 a[j] (a[j]+temp) mod p;
 end for
 jTwi ++;
 end for
end for
Return z

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 8, August 2022 2819

A radix-R FNT factorizes an N-point NTT into NR-point NTTs following logRN levels of
decomposition. Consider that the index of the first level is 1, the index of the top-level NTT
(before any decomposition) is equals to 0. At each level of decomposition, the index is
increased of 1, and the number of NTTs at each level R.. Each NTT now contains N/Rl number
of points. To implement radix-R FNT for a N-point NTT, the length N must be a power of R.
There is a way to avoid this limitation when N is not a power of R, which is widely known as
“mixed-radix FNT”. This technique uses different radices of FNT at different level. However,
such technique is very complicated to implement in hardware, and it often consumes a larger
hardware area since it has to accommodates separate computational modules for different
radices. Radix-R FNT is essentially a technique that employs the divide-and-conquer paradigm
by dividing the original N-point FNT into R number of FNTs. This process is repeated until
each of the FNTs have only R data.

To compute N-point FNT, a radix-R FNT module competes R amount of data at a time. This
means that a radix-4 FNT module can process more data at each level compared to radix-2
FNT. In contrast, a radix-2 FNT module has shorter latency compared to radix-4 module, but
it requires more modules to compute the same amount of work. For instance, we need four
radix-2 FNT modules to compute a 4-point NTT, but only one radix-4 FNT module to do the
same computation. The number of radix-R FNT modules, NR needed to compute N-point FNT
is NR = (N/R) × logRN, where logRN is the number of FNT level and (N/R) is the number of
radix-R FNT module needed at each level.

Implementing N-point FNT module with fully NR number of radix-R modules is too costly for
resource constrained FPGA. To overcome this issue, the number of radix-R modules
implemented in hardware is usually less than NR; they are being reused at different level of
FNT to reduce the hardware resource consumption. At each level of FNT, the input data are
loaded from the memory for computation; the intermediate results are then written back to the
memory. This process repeats until the whole FNT process is completed. Hence, the number
of FNT level is a crucial for speed performance, as it determines the number of memory
read/write operations required, thus affecting the memory latency of FNT process.

Table 1. NR needed for radix-2 and radix-4 FFT for N-point FFT

N Radix-2 Radix-4

2 1 -
4 4 1
8 12 -
16 32 8
32 80 -
64 192 48

128 448 -
256 1024 256

Although a single radix-4 FNT module has longer latency compared to radix-2 FNT module,
it is advantageous due to the lesser FNT level, eventually reduced the memory latency of the
whole FNT process. The number of levels required to complete an N-point FNT (NS) is equals
to logRN. This implies that FNT with higher radix (R) has smaller number of FNT level (NS).

2820 Chang et al.: High Performance Integer Multiplier on FPGA
with Radix-4 Number Theoretic Transform

Radix-4 FFT has lesser stages compared to radix-2 FNT, while radix-8 FNT has lesser stages
than radix-4 FNT. However, the improvement gained by reducing NS (increase R) is
diminishing when R gets larger. Fig. 2 shows the number of levels (NS) for different sizes in
N, with R = 2, 4, 8, 16.

Fig. 1. Illustration of radix-2 and radix-4 FNT.

Fig. 1a) shows the construction of a radix-2 FNT module. Fig. 1b) illustrates how four radix-
2 FNT modules can be used to form a 4-point FNT, wherein four input data are processed two-
by-two and stored into a set of intermediate data (m0; m1; m2; m3), before proceeding to the
second level of radix-2 FNT. On the other hand, radix-4 module (Fig. 1c)) allows four input
data to be processed at once within one level. Table 1 shows the number of radix-2 and radix-
4 modules needed for N-point FNT, where N is in power of 2 and range from 2 to 256. Note
that for a fully radix-R FNT to be computed, N must be a power of R; this explains that for
cases where N = 2; 8; 32; 128, radix-4 FNT cannot be used. This is the drawback for high radix
FNT where R > 2.

Implementing N-point FNT module with fully NR number of radix-R modules is too costly for
resource constrained FPGA. To overcome this issue, the number of radix-R modules
implemented in hardware is usually less than NR; they are being reused at different level of
FNT to reduce the hardware resource consumption. At each level of FNT, the input data are
loaded from the memory for computation; the intermediate results are then written back to the
memory. This process repeats until the whole FNT process is completed. Hence, the number
of FNT level is a crucial for speed performance, as it determines the number of memory
read/write operations required, thus affecting the memory latency of FNT process.

Although a single radix-4 FNT module has longer latency compared to a single radix-2 FNT
module, it is advantageous due to the lesser FNT level, eventually reduced the memory latency
of the whole FNT process. The number of levels required to complete an N-point FNT (NS) is
equals to logRN. This implies that FNT with higher radix (R) has smaller number of FNT level
(NS). Radix-4 FFT has lesser stages compared to radix-2 FNT, while radix-8 FNT has lesser
stages than radix-4 FNT. However, the improvement gained by reducing NS (increase R) is
diminishing when R gets larger. Fig. 2 shows the number of levels (NS) for different sizes in
N, with R = 2, 4, 8, 16.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 8, August 2022 2821

Fig. 2. Number of stages, NS against Number of points, N.

2.3 Related Work
SSMA is widely used to speed-up the computation of large integer multiplication and
polynomial multiplication in cryptography. It is mainly employed by fully homomorphic
encryption and public key cryptography, since these algorithms involve a lot of heavy
computation in the integer or polynomial domain. For instance, elliptic curve cryptography
(ECC) needs to compute a lot of point multiplication that involve modular reduction on integer
larger than 128-bit. To ensure sufficient security, RSA also needs to perform modular
exponentiations on a very large integer (greater than 2048-bit).

Recently, the introduction of practical quantum computer created serious concern among the
research community. The Shor’s algorithm [7] executed on quantum computers can easily
break the existing ECC and RSA schemes. This has a catastrophic consequence because ECC
and RSA schemes are very widely used in the industry in the past decades, and they are still
being used now. This stimulated the development of many new public key cryptographic
algorithms to resist the potential threat from quantum computers. To avoid such problems, the
United States’s National Institute of Standards and Technology (NIST) had called upon a
worldwide competition to select a few suitable post-quantum cryptography (PQC) schemes
[8]. This competition started in 2017 and currently in its third round, wherein 15 candidates
are selected for final evaluation. Among these finalists, many schemes like Kyber (key-
encapsulation mechanism, KEM) [9] and Dilithium (digital signature) [10] are developed
based on the lattice problem, which is known to be NP hard. Lattice-based problems are also
widely used to develop advanced cryptographic protocols [11]. These lattice-based schemes
are computationally expensive due to the extensive use of polynomial multiplications.

One way to improve the efficiency of computing polynomial multiplication is to offload it to
hardware module. Roy and Basso [12] show that with careful design, a schoolbook polynomial
multiplication technique can achieve very fast speed on FPGA hardware. This hardware
module can be implemented as instruction sets to speed up the computation in embedded
system. On the other hand, one can also use asymptotically fast algorithm like SSMA to speed-
up the polynomial multiplication. One notable example was demonstrated by Bisheh-Niasar
et al. [13] through the use of NTT, implemented efficiently on FPGA hardware.

2822 Chang et al.: High Performance Integer Multiplier on FPGA
with Radix-4 Number Theoretic Transform

Besides public key cryptography and PQC, fully homomorphic encryption schemes also
perform computations on large integer and polynomial. For instance, Cao et al. [3]
demonstrated a hardware architecture suitable for performing fully homomorphic encryption,
which relies on the efficient radix-2 NTT architecture and a low-hamming weight technique
to provide low latency implementation. Other low-complexity [2] and area-efficient
architecture [14] were also proposed to speed-up the implementation of polynomial
multiplication on hardware. Note that these hardware architectures only explore radix-2 NTT
due to its low hardware area consumption. In this paper, we proposed to explore other radices
to improve the speed performance of NTT.

GPU and FPGA are the two representative accelerators used by many cloud services providers
like AWS and IBM. Due to this reason, there are also implementations of NTT on GPU to
speed up the cryptography algorithms. For instance, Gupta et al. [20] presented the
implementation of radix-2 NTT optimized for the Kyber KEM. On the other hand, Jiminez et
al. [21] presented the secure implementation of RSA relying on the residue number system.
Note that GPU implementation is essential hardware techniques, which are very hard to
generalize to FPGA hardware architecture.

3. Evaluation of Radix-2 and Radix-4 NTT Architecture

3.1 Parameter Set
The sub-section title should be written in 11-point size using Arial font style, block color, and
The modulus chosen for our NTT is 0xFFFFFFFF00000001, which is a 64-bit Solinas prime
that serves several useful properties [15]. Firstly, given a 128-bit number in its polynomial
form: P128−bit(X) = aX96 + bX64 + cX32 + d, where a, b, c and d are the coefficients. The modular
operation (over P) of this 128-bit number is equivalent to (232)(b + c)a − b + d. This property
is allowing us to handle overflow that potentially occurs when multiplying two 64-bit data.
Note that the coefficients of the 128-bit number are derived from the Karatsuba multiplication
algorithm.

Secondly, the root of unity, g for 4-point and 16-point are g4 = 0x1000000000000 and g16 =
0x1000 respectively. Since both g are of power-of-two, the expensive twiddle factors
multiplication can be replaced with simple left shifting. Each NTT point is of 24-bit size and
half of the NTT points are reserved for the multiplication product.

3.2 16-point FNT Designs
Three different FNT modules are implemented to compute 16-point FNT for performance
evaluation. The first design uses radix-2 FNT module, while second design employs a generic
radix-4 FNT module. The third design is our proposed solution (we refer it as radix-4 CTFNT
module in the subsequent discussions).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 8, August 2022 2823

Fig. 3. Block diagram: radix-2 FNT module.

Fig. 4. Block diagram: radix-4 FNT module

Fig. 5. Block diagram: radix-4 CTFNT module

Fig. 3 shows the block diagram of a radix-2 FNT module, which is commonly used in FNT
hardware design [16]. Fig. 4 shows the generic radix-4 FNT module that can be constructed
by combining four radix-2 FNT modules in 2-by-2 manner. The block diagram of our proposed
radix-4 CTFNT module with Cooley-Tukey decomposition is illustrated in Fig. 5. Realizing
the fact that there are only two constant twiddle factors to be used in radix-4 CTFNT, and the
multiplication of these two twiddle factors can be done by modular left shift, we presented an
improved design in Fig. 6. The improved design effectively reduces the hardware resources,
removing the need of various twiddle factor inputs and does not need an extra signal to choose
between left shifting for forward/inverse transform.

3.3 Performance Evaluation
The proposed 16-point radix-4 CTFNT architecture is implemented in Xilinx Artix-7
(xc7a100tcsg324-1) FPGA. The result is then compared with radix-2 FNT and radix-4 FNT
implementation in the same FPGA. Table 2 shows the resources required to construct 16-point
FNT with different hardware architectures (radix-2 FNT, radix-4 FNT and radix-4 CTFNT)
and their respective speed performance. The results show that our proposed radix-4 CTFNT

2824 Chang et al.: High Performance Integer Multiplier on FPGA
with Radix-4 Number Theoretic Transform

module is able to achieve 2× speedup but consumes 4× more resources. Compared to the
generic radix-4 FNT module, the radix-4 CTFNT consumes lesser resources and is 10% faster.
From this evaluation, we can conclude that radix-4 CTFNT can achieve faster speed
performance in expense of more hardware resources. This 16-point NTT architecture can be
used to handle integer multiplication with 192-bit operands. In future, this can be extended to
256-point FNT using the proposed radix-4 CTFNT to construct a full 3072-bit SSMA
multiplier, which can be useful for cryptography (e.g., RSA [16]).

Fig. 6. Block diagram: radix-4 CTFNT module (improved)

Table 2. Resources utilization and timing performance of 16-point FNT with Radix-R FFT module

Hardware
Design

Resources Timing
Look-up

Table
(LUT)

Flip-
Flop
(FF)

LUTR
AM

BRA
M

DS
P

clock
cycle

period
(ns)

latency
(ns)

16-point

FNT

Radix-2 FNT 1687 456 3 4 12 36 50 1800
Radix-4 FNT 6662 2063 68 7 48 20 50 1000

Radix-4 CT FNT 6421 1805 35 8 45 18 50 900

4. Complete 3072-bit SSMA Multiplier
In this section, we present the design of a 256-point FNT and the construction of a 3072-bit
SSMA multiplier. Each NTT point handles 24-bit integer and only half of the NTT points
contain the actual data; the other half are padded with zero [3]. Hence, the maximum supported
operand size for this implementation is equal to 24 × 256=2 = 3072-bit. The 256-point FNT is
first decomposed into sixteen 16-point × 16-point FNTs; each of the 16-point FNT is then
further decomposed into four 4-point FNTs. Since these two levels of CTFNT decomposition
are done with symmetrical decomposition (N1 = N2), the precomputed twiddle factors can be
shared by both column and row FNTs, reducing the memory costs by half.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 8, August 2022 2825

4.1 Proposed Partially Pipelined 3K-multiplier

Fig. 7. Block diagram of the partially pipelined 3K-multiplier.

Fig. 7 shows the block diagram of our first 3k-multiplier design using two radix-4 CTFNT
modules to perform the column and row NTT operations. The functionalities for each part of
the 3k-multiplier are briefly described below:

1) Part (a): Block RAM module; this hosts the memory units to hold the input data
(original, intermediate, and final data).

2) Part (b): radix-4 FNT module, perform FNT computation with four inputs and produce
four FNT outputs.

3) Part (c): Multiplier module, perform multiplication with twiddle factors.
4) Part (d): Temporary registers (to store the intermediate data of FNT) and the

convolution unit.
5) Part (e): radix-4 FNT module, perform FNT computation with four inputs and produce

four FNT outputs.
6) Part (f): Multiplier module, perform multiplication with twiddle factors.

Part (a), (b) and (c) are the modules used to compute the column-NTT. It processes four points
at a time and store the intermediate results onto part (d) (the temporary registers). All the
column-NTT must complete before proceeding to the row-NTT. The row-NTT are handled by
part (e), (f) and (a). Note that the BRAM in part (a) is used to store the input and intermediate
data during the FNT computation. The final results are also stored in the BRAM. In this design,
the column-NTT read data from the block RAM and write to the temporary registers.
Conversely, we can see that the row-NTT read data from the temporary registers and write
back to the block RAM. Part (d) also computes the convolution of the SSM, which reads and
writes data that are stored in the block RAM. The convolution module does not need any
intermediate memory. However, an efficient hardware architecture should ensure that the data
flow is always fully pipelined. In this design, there are dependencies between different parts,
causing it to be a partially pipeline design, which is not efficient. In particular, part (e), (f) and
(a) (row-NTT) must be in idle state while waiting for blocks (a), (b) and (c) (column-NTT) to
complete their computation. Likewise, block (a), (b) and (c) must be stalled when block (e),
(f) and (a) are running. This drastically reduces the hardware occupancy and efficiency, which
motivates us to design a fully pipelined architecture.

4.2 Proposed Fully Pipelined 3K-multiplier
Fig. 8 shows the proposed fully pipelined design improved from the partially pipelined version
presented in Section 4.1. In this fully pipelined design, instead of waiting for one 16-point
column FNT to complete before the 16-point row FNT, four radix-4 CTFNT modules are

2826 Chang et al.: High Performance Integer Multiplier on FPGA
with Radix-4 Number Theoretic Transform

instantiated and arranged in parallel. This allows the proposed architecture to compute either
four 4-point column or 4-point row FNTs, and then store back to the memory before the next
FNT. In other words, there will be always sufficient data to feed the pipeline in our architecture,
eventually achieving a more efficient design compared to the partially pipelined version. To
achieve this efficient design, there are extra pipeline registers added to the output of the
multipliers. This is designed in this way to avoid the possible collision of data (race condition)
when two or more modules are accessing the same BRAM. For instance, if four data from the
multipliers tries to write onto the BRAM0, then the second data is delayed by one clock cycle.
The remaining third and fourth data are then delayed by two and three clock cycles respectively.
The overall process takes 198 clock cycles, while the delay introduced three additional clock
cycles to completely fill the pipeline. This overhead is insignificant as it is only around 1.5%
of the overall process, but it allows full throughput efficiency to be achieved.

Fig. 8. Block diagram of the fully pipelined 3K-multiplier.

4.3 Experimental Results
Table 3. Resources and Performance Comparison with [16].

Architecture
Design

FPGA
Hardware

Bit-size
(bit)

Resources Timing
Look-up

Table
(LUT)

BRAM DSP Clock
Cycles

Period
(ns)

Latency
(ns)

Our Work Artix-7 3072 20129 16:1 192 198 50 9900
Virtex-6 3072 30489 48:0 192 198 33 6534

Chen et al.
[16]

Virtex-6 3100 21672 33:11 108 843 8 6740
Virtex-6 3132 12147 22:0 27 1701 6.09 10360
Virtex-6 3196 11728 22:0 27 3693 6.19 22860
Virtex-6 3196 5835 11:0 9 3633 5.09 18490

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 8, August 2022 2827

The performance of proposed 3072-bit SSMA multiplier is shown in Table 3. Our
implementation requires only 6.534µs and 9.900µs to complete the multiplication when it is
executed in Virtex-6 (xc6vlx130t-1) and Artix-7 (xc7a100tcsg324-1) respectively. Compared
with Virtex-6, the implementation on Artix-7 utilized about 2/3 lesser resources and run at
slower clock frequency, resulting in a higher latency. This is because the Artix family FPGA
is designed for low power instead of high performance, compared to Virtex-6 family. Hence,
applications that requires high multiplication performance can implement the proposed 3072-
bit SSMA multiplier into a high-end FPGA like Virtex-6. For other applications that puts
priority on area consumption and energy efficiency, the proposed 3072-bit SSMA multiplier
can be implemented in low end FPGA like Artix-7.

4.4 Discussions and Future Work
Our work can outperform the best 3k-multiplier from Chen et al. [16] by 3.06%, but it also
costs about 40% more LUTs and 77.8% more DSPs resources. This is due to the parameters
set used in their implementation is different from our work. In our implementation, we focus
on 3k-multiplier implemented with fixed 64-bit Solinas prime and 64-bit data processing. On
the other hand, Chen et al. [17] introduced multiplier with comprehensive range (covering 1k-
bit to 15k-bit). These multiplier employs Pseudo-Fermat number as modulo for NTT, where
the modulo ranges from 65-bit to 273-bit. Using a modulo with larger bit size allowed the
multiplication operands to be broken down into lesser number of elements of larger size each.
Hence, the NTT with lesser number of transformation points can be used to reduce the number
of internal operations, including addition, subtraction, and multiplication between two points.
Take their best timing performance 3k-multiplier as example, a 225-bit
modulo allowed the 3k-multiplier to be implemented with only 64-point NTT at 97-bit each.
Compared to our 3k-multiplier, we use 64-bit modulo and requires 256-point NTT with 24-bit
each. This explains why our current design cannot gain further speed performance against the
results from Chen et al. [17].

On the other hand, it is believed that lesser number of NTT points with greater bit size for each
of the point, is better than having more points with lesser bit size each. This is because NTT
module with lesser points can be computed faster. However, point-wise mathematical
operations of larger bit size require more time to compute. For instance, addition of two 24-
bit numbers can be done faster than addition of two 97-bit numbers. Hence, we consider
exploring the possibilities of using NTT modulo of larger bit size, with Solinas prime and other
suitable numbers. We believe that there are still room for improvement for the proposed radix-
4 CTFNT architecture, after considering these factors.

5. Conclusion
In this paper, we show that the proposed radix-4 CTFNT architecture outperforms the radix-2
and generic radix-4 NTT architecture for 16-point FNT computation. We also presented the
design of a 3072-bit multiplier based on the proposed radix-4 CTFNT architecture to show its
practicality in cryptography applications. In future, we plan to develop an efficient
exponentiation hardware architecture based on the developed multiplier, to support a full RSA
computation in FPGA. To achieve a better energy efficiency, we also aim to develop a
reconfigurable version of this multiplier in future to suit different multiplicands sizes and
performance constraints in Internet of Things (IoT) applications.

2828 Chang et al.: High Performance Integer Multiplier on FPGA
with Radix-4 Number Theoretic Transform

Acknowledgement
This work was supported by the Fundamental Research Grant Scheme (FRGS) Malaysia (No.
FRGS/1/2021/ICT07/UTAR/01/1). The work of Wai-Kong Lee was supported by the Brain
Pool Program through the National Research Foundation of Korea (NRF) funded by the
Ministry of Science and Information Communication Technology (ICT) under Grant
2019H1D3A1A01102607.

References
[1] D. Harvey, “Computing zeta functions of arithmetic schemes,” Proceedings of London

Mathematical Society, vol. 111, no. 6, pp. 1379 - 1401, 2015. Article (CrossRef Link)
[2] J. H. Ye and M.-D. Shieh, “Low-Complexity VLSI Design of Large Integer Multipliers for Fully

Homomorphic Encryption,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 26, no. 9, pp. 1727 - 1736, 2018. Article (CrossRef Link)

[3] X. Cao, C. Moore, M. O’Neill, E. O’ Sullivan E. and N. Hanley, “Optimised multiplication
architectures for accelerating fully homomorphic encryption,” IEEE Transactions on Computers,
vol. 65, no. 9, pp. 2794 - 2806, 2016. Article (CrossRef Link)

[4] W. Wang, X. Hu, L. Chen, X. Huang, B. Sunar, “Exploring the Feasibility of Fully Homomorphic
Encryption,” IEEE Transactions on Computers, vol. 64, no. 3, pp. 698-706, 2015.
Article (CrossRef Link)

[5] A. Schonhage and V. Strassen, “Schnelle Multiplikation grosser Zahlen,” Computing, vol. 7, pp.
281-292, 1971. Article (CrossRef Link)

[6] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex fourier
series,” Mathematics of Computation, vol. 19, no. 90, pp. 297-301, 1965. Article (CrossRef Link)

[7] P. Shor, “Algorithms for Quantum Computation: Discrete Logarithm and Factoring,” in Proc. of
IEEE FOCS '94, pp. 124-134, 1994. Article (CrossRef Link)

[8] NIST, “Post-quantum cryptography standardization,” 2017. [Online]. Available:
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-
Standardization [10-Nov-2021]

[9] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe, G. Seiler,
and D. Stehl ́e, “CRYSTALS-Kyber: a CCA-secure module-lattice-based KEM,” in Proc. of 2018
IEEE European Symposium on Security and Privacy (EuroS&P), IEEE, pp. 353–367, 2018.
Article (CrossRef Link)

[10] L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehle, “CRYSTALS-
Dilithium: A Lattice-Based Digital Signature Scheme,” IACR Transactions on Cryptographic
Hardware and Embedded Systems (TCHES), vol. 2018, no. 1, pp. 238–268, 2018.
Article (CrossRef Link)

[11] B. Mi and D. Liu, “Topology-Hiding Broadcast Based on NTRUEncrypt,” KSII Transactions on
Internet and Information Systems, vol. 10, no. 1, pp. 431-443, 2016. Article (CrossRef Link)

[12] S. S. Roy and A. Basso, “High-speed Instruction-set Coprocessor for Lattice-based Key
Encapsulation Mechanism: Saber in Hardware,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, vol. 2020, no. 4, pp. 443-466, 2020. Article (CrossRef Link)

[13] M. Bisheh-Niasar, R. Azarderakhsh, M. Mozaffari-Kermani, “Instruction-Set Accelerated
Implementation of CRYSTALS-Kyber,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 68, no. 11, pp. 4648-4659, 2021. Article (CrossRef Link)

[14] X. Feng and S. Li, “Design of an Area-Effcient Million-Bit Integer Multiplier Using Double
Modulus NTT,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no.
9, pp. 2658-2662, 2017. Article (CrossRef Link)

[15] E. Niall and C. C. Weems, “High precision integer multiplication with a GPU using Strassen’s
algorithm with multiple FFT sizes,” Parallel Processing Letters, vol. 21, no. 3, pp. 359-375, 2011.
Article (CrossRef Link)

https://doi.org/10.1112/plms/pdv056
https://doi.org/10.1109/TVLSI.2018.2829539
https://doi.org/10.1109/TC.2015.2498606
https://doi.org/10.1109/TC.2013.154
http://doi.org/10.1007/BF02242355
https://doi.org/10.1090/S0025-5718-1965-0178586-1
https://doi.org/10.1109/SFCS.1994.365700
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.3837/tiis.2016.01.025
https://doi.org/10.13154/tches.v2020.i4.443-466
https://doi.org/10.1109/TCSI.2021.3106639
https://doi.org/10.1109/TVLSI.2017.2691727
https://doi.org/10.1142/S0129626411000266

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 8, August 2022 2829

[16] X. Huang and W. Wang, “A Novel and Efficient Design for an RSA Cryptosystem With a Very
Large Key Size,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 10,
pp. 972-976, 2015. Article (CrossRef Link)

[17] D. D. Chen, G. X. Yao, R. C. C. Cheung, D. Pao and K. Ko, “Parameter Space for the Architecture
of FFT-Based Montgomery Modular Multiplication,” IEEE Transactions on Computers, vol. 65,
no. 1, pp. 147-160, Jan. 1, 2016. Article (CrossRef Link)

[18] B. L. Tan, K. M. Mok, J. J. Chang, W. K. Lee, S. O. Hwang, “RISC32-LP: Low-power FPGA-
based IoT Sensor Nodes with Energy Reduction Program Analyzer,” IEEE Internet of Things
Journal, vol. 9, no. 6, pp. 4214-4228, 2022. Article (CrossRef Link)

[19] W. P. Kiat, K. M. Mok, W. K. Lee, H. G. Goh, R. Achar, “An energy efficient FPGA partial
reconfiguration based micro-architectural technique for IoT applications,” Microprocessors and
Microsystems, vol. 73, pp. 102966-102975, 2020. Article (CrossRef Link)

[20] N. Gupta, A. Jati, A. K. Chauhan, A. Chattopadhyay, “PQC Acceleration Using GPUs: FrodoKEM,
NewHope, and Kyber,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 3,
575-586, 2021.

[21] E. O.-Jiminez, L. R.-Zamarripa, N. C.-Cortes, F. R.-Henrique, “Implementation of RSA
Signatures on GPU and CPU Architectures,” IEEE Access, pp. 9928-9941, 2020.

Boon-Chiao Chang received his Bachelor and the M.Eng.Sc degrees from Universiti of
Tunku Abdul Rahman (UTAR), Malaysia in 2015 and 2019, respectively. He is currently
working as Software Engineer in Infologic LTE PTD, Singapore. Mr. Chang’s interests and
focuses include problem solving and algorithms analysis in software development.

Wai-Kong Lee received the B.Eng. degree in electronics and the M.Sc. degree from
Multimedia University in 2006 and 2009, respectively, and the Ph.D. degree in engineering
from Universiti Tunku Abdul Rahman, Malaysia, in 2018. His research interests are in the
areas of cryptography, numerical algorithms, GPU computing, Internet of Things, and energy
harvesting. He is currently a post-doctoral researcher in Gachon University, South Korea.

https://doi.org/10.1109/TCSII.2015.2458033
https://doi.org/10.1109/TC.2015.2417553
https://doi.org/10.1109/JIOT.2021.3103035
https://doi.org/10.1016/j.micpro.2019.102966

2830 Chang et al.: High Performance Integer Multiplier on FPGA
with Radix-4 Number Theoretic Transform

Bok-Min Goi received his B.Eng degree from University of Malaya (UM) in 1998, and the
M.Eng.Sc and PhD degrees from Multimedia University (MMU), Malaysia in 2002 and 2006,
respectively. He is now the Vice President and a senior professor in the Lee Kong Chian
Faculty of Engineering and Science, Universiti Tunku Abdul Rahman (UTAR), Malaysia. Ir.
Prof. Goi was also the General Chair for ProvSec 2010 and CANS 2010, Honored Chair for
ISPEC 2019, Programme Chair for IEEE-STUDENT 2012 , Cryptology 2014-2016, ICDSP
2019-2022 and the TPC members for many crypto/security conferences. He was elected as
Fellow of the ASEAN Academy of Engineering & Technology (AAET) and Academy of
Science Malaysia Fellow on 2015 and 2018, respectively. His research interests include
cryptology, information security & biometrics, digital watermarking and embedded systems
design. Prof. Goi is a senior member of the IEEE and corporate member of the Institution of
Engineers, Malaysia (IEM).

Seong Oun Hwang received the B.S. degree in mathematics from SeoulNational
University, in 1993, the M.S. degree in information and communications engineering from
the Pohang University of Science and Technology, in 1998, and the Ph.D. degree in computer
science from the Korea Advanced Institute of Science and Technology, in 2004, South Korea.
He worked as a Software Engineer with LG-CNS Systems, Inc., from 1994 to 1996. He
worked as a Senior Researcher with the Electronics and Telecommunications Research
Institute (ETRI), from 1998 to 2007. He worked as a Professor with the Department of
Software and Communications Engineering, Hongik University, from 2008 to 2019. He is
currently a Professor with the Department of Computer Engineering, Gachon University. His
research interests include cryptography, cybersecurity, and artificial intelligence. He is an
Editor of ETRI Journal.

